CRYSTAL STRUCTURE OF CHLOROTRIS(TETRACARBONYLCOBALT)TIN, $\mathrm{ClSn}\left[\mathrm{Co}(\mathrm{CO})_{4}\right]_{3}$

\author{
B. P. BIR'YUKOV, E. A. KUKHTENKOVA, Yu. T. STRUCHKOV, K. N. ANISIMOV, N. E. KOLOBOVA and V. I. KHANDOZHKO
 Institute of Organo-Element Compounds, Academy of Sciences of the U.S.S.R., Vavilosa 28, Moscow (E.S.S.R.\}

}
(Received October 1st, 1970)

SUMMARY

The molecular structure of the title compound is unequivocally established by X-ray crystallography. The coordination of Co atoms is trigonal-bipyramidal, whereas that of Sn atom being distorted tetrahedral. The mean Sn -Co distance is $2.60 \AA$. The $\mathrm{Sn}-\mathrm{Cl}$ bond length ($2.54 \AA$) is definitely greater than the sum of covalent radii ($2.39 \AA$.)

INTRODUCTION

Graham et al. ${ }^{1}$ have studied the reaction of SnCl_{4} with $\mathrm{CO}_{2}(\mathrm{CO})_{8}$ and isolated the solid dark red compound (I) which on the basis of its mass spectrum was assigned the structure (A) containing $\mathrm{Co}^{-} \mathrm{Co}$ bond and the bridged CO -group although the symmetrical structure (B) seems to be more natural :

(A)

(a)

In view of our previous investigations of tin-transition metal bend distances ${ }^{2,3}$ we undertook the X-ray study of (I) to elucidate its molecular structure and to determine the $\mathrm{Sn}-\mathrm{Co}$ bond length.

RESULTS AND DISCUSSION
The plate-like crystals of (I) are orthorhombic: $a=8.36 \pm 0.01, b=16.08 \pm 0.01$, $c=16.20 \pm 0.01 \AA, V=2074 \AA^{3}, \mathrm{~d}_{\mathrm{m}}=2.00 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$ belonging to the space group $P 2_{1} / c$. The intensities of ca. 650 independent non-zero reflections were estimated visually disregarding absorption corrections. An equi-inclination Weissenberg goniometer was used with unfiltered iron radiation. The structure was resolved by the heavy-atom technique and refined by the full-matrix least-squares method with
individual isetropic temperature factors to $R=0.12_{2}$ with an overall temperature factor $B=5.2 \AA$. The standard deviations are: $\mathrm{Sn}-\mathrm{Co} 0.01, \mathrm{Sn}-\mathrm{Cl} 0.01_{5}, \mathrm{Co}-\mathrm{C} \mathrm{0.03}$, $\mathrm{C}^{-0} 0.05 \AA, \mathrm{CoSnCo} 0.3, \mathrm{CoSnCl} 0.5, \mathrm{SnCoC} 0.9, \mathrm{CCoC} 1.9, \mathrm{CoCO} 1.7^{\circ}$. The final atomic coordinates and isotropic temperature factors B_{j} in \AA^{2} are given in Table 1.

The molecular geometry is shown in Fig. 1. According to the present X-ray study the compound (I) seems to have the symmetrical structure (B). Similar molecular

Fig. 1.
structure has been established independently ${ }^{4}$ for analogous bromo-derivative, $\mathrm{BrSn}\left[\mathrm{Co}(\mathrm{CO})_{4}\right]_{3}$. The tin atom has distorted tetrahedral coordination. Due to steric factors the CoSnCo angles (average 114°) are increased and the ClSnCo angles (average 104°) are decreased as compared to the ideal value. A similar distortion is found, in the analogous molecule of $\mathrm{ClSn}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]_{3}(\mathrm{II})\left(\mathrm{av} . \mathrm{MnSnMn} 116^{\circ}\right.$, av. $\left.\mathrm{ClSnMn} 101^{\circ}\right)^{5}$. The $\mathrm{Sn}-\mathrm{Cl}$ bond length ($2.54 \AA$) is definitely greater than that found in (II) ($2.43 \AA$) and also than the sum of the single bonded covalent radii ($2.39 \AA$). This lengthening is probably caused by pelar character of the $\mathrm{Sn}-\mathrm{Cl}$ bond in (1).

The coordination of Co atoms is distorted trigonal-bipyramidal. The equa-

TABLE 1

Atom	x	y	z	B	Atom	\boldsymbol{x}	y	z	B
Sn	0.0500	0.2346	0.3641	3.6	C(11)	0.355	0.133	0.609	4.8
$\mathrm{Co}(1)$	-0.0716	0.1209	0.2492	3.6	C(12)	0.342	0.276	0.509	4.6
$\mathrm{Co}(2)$	-0.1709	0.3446	0.3792	3.6	$\mathrm{O}(1)$	0.264	0.113	0.229	6.5
$\mathrm{Co}(3)$	0.2444	0.1785	0.5091.	3.8	$\mathrm{O}(2)$	-0.218	0.002	0.112	5.7
Cl	0.2428	0.3176	0.2976	3.9	$\mathrm{O}(3)$	-0.316	0.248	0.162	4.9
C(1)	0.140	0.124	0.246	7.6	O(4)	-0.136	0.025	0.391	5.2
C(2)	-0.158	0.041	0.174	4.2	$\mathrm{O}(5)$	-0.140	0.406	0.214	4.0
C(3)	-0.199	0.203	0.197	4.5	O(6)	-0.383	0.202	0.390	4.0
C(4)	-0.091	0.068	0.342	7.0	$O(7)$	-0.425	0.463	0.391	4.9
C(5)	-0.139	0.390	0.286	4.7	O(8)	0.058	0.407	0.544	5.8
$C(G)$	-0.301	0.262	0.393	5.1	O(9)	0.356	0.047	0.412	5.7
C(7)	-0.313	0.419	0.394	6.3	O(10)	-0.070	0.154	0.548	6.5
C(8)	-0.040	0.375	0.484	5.2	O(11)	0.444	0.110	0.375	4.5
C(9)	0.300	0.101	0.446	7.0	O(12)	0.440	0.333	0.532	5.0
C(10)	0.047	0.164	0.530						

torial CCoC angles vary from 113° to 132°. Equatorial CO -groups are deflected from apical CO -groups towards the Sn atom so as the average values of SnCoC (equatorial) angles are less than 90° [80.9, 88.7 and 82.9 for $\mathrm{Co}(1), \mathrm{Co}(2)$ and $\mathrm{Co}(3)$ respectively]. The mean bond lengths are: $1.77 \AA$ for $\mathrm{Co}-\mathrm{C}$ and $1.17 \AA$ for $\mathrm{C}-\mathrm{O}$ and the CoCO angles vary from 160° to 175°.

The Sn -Co bond lengths are found to be $2.58,2.59$ and $2.62 \AA$. A similar difference though strange for tetrahedral Sn atom, is found also for $\mathrm{Sn}-\mathrm{Mn}$ bond distances in (II): 2.720, 2.746 and 2.753 A in one independent molecule and 2.703, 2.745 and $2.758 \AA$ in another. The average $\mathrm{Sn}-\mathrm{Co}$ bond length ($2.60 \AA$) is somewhat shorter than the value ($2.66 \AA$) found previously ${ }^{3}$ in $(\mathrm{OC})_{4} \mathrm{CoSn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Mn}(\mathrm{CO})_{5}$ and definitely less than the sum of single bonded covalent radii $(2.75 \AA)^{6,7}$.

REFERENCES

1 W. A. G. Graham, Inorg. Chem., 4 (1965) 2222.
2 B. P. Bir'yukov, Yu. T. Struchkov, K. N. Anisimov, N. E. Kciobova and V. V. Skripkin, Chem. Commun., (1967) 750; (1968) 159; (1968) 1193.
3 B. P. Bir'yukov, Yu. T. Struchkov, K. N. Anisimov, N. E. Kolobova, O. P. Osipovf and M. Ya. Zakharkova, Chem. Commun., (1967) 749.
4 W. A. G. Graham, private communication August 1969.
5 J. H. Thai, J. J. Flynn and F. P. Boer, Chem. Commun., (1967) 702.
6 L. Pauling, The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, New York, 1960.

7 V. G. Andrlanov, B. P. Bir'yukov, Yu. T. Struchkov, Zh. Strukt. Khim., 10 (1969) 1129.

